Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Article En | MEDLINE | ID: mdl-38240783

This study explored the potential of poly-(lactic-co-glycolic) acid (PLGA) nanoparticles to enhance the effectiveness of anticancer treatments through combination therapy with phytol and α-bisabolol. The encapsulation efficiency of the nanoparticles was investigated, highlighting the role of ionic interactions between the drugs and the polymer. Characterization of PLGA-Phy+Bis nanoparticles was carried out using DLS with zeta potential and HR-TEM for size determination. Spectrophotometric measurements evaluated the encapsulation efficiency, loading efficiency, and in vitro drug release. FTIR analysis assessed the chemical interactions between PLGA and the drug actives, ensuring nanoparticle stability. GC-MS was employed to analyze the chemical composition of drug-loaded PLGA nanocarriers. Cytotoxicity was evaluated via the MTT assay, while Annexin V-FITC/PI staining and western blot analysis confirmed apoptotic cell death. Additionally, toxicity tests were performed on L-132 cells and in vivo zebrafish embryos. The study demonstrates high encapsulation efficiency of PLGA-Phy+Bis nanoparticles, which exhibit monodispersity and sizes of 189.3±5nm (DLS) and 268±54 nm (HR-TEM). Spectrophotometric analysis confirmed efficient drug encapsulation and release control. FTIR analysis revealed nanoparticle structural stability without chemical interactions. MTT assay results demonstrated the promising anticancer potential of all the three nanoparticle types (PLGA-Phy, PLGA-Bis, and PLGA-Phy+Bis) against lung cancer cells. Apoptosis was confirmed through Annexin V-FITC/PI staining and western blot analysis, which also revealed changes in Bax and Bcl-2 protein expression. Furthermore, the nanoparticles exhibited non-toxicity in L-132 cells and zebrafish embryo toxicity tests. PLGA-Phy+Bis nanoparticles exhibited efficient encapsulation, controlled release, and low toxicity. Apoptosis induction in A549 cells and non-toxicity in healthy cells highlight their clinical potential.

2.
J Biochem Mol Toxicol ; 38(1): e23580, 2024 Jan.
Article En | MEDLINE | ID: mdl-37961937

Alzheimer's disease (AD) is one of the major devastating neurodegenerative disorders associated with the gradual decline of an individual's memory, cognition, and ability to carry out day-to-day activities. In the present study, the neuroprotective ability of α-bisabolol ß-d-fucopyranoside (ABFP) was assessed via measurement of antioxidant parameters like lipid peroxidation, glutathione peroxidation, glutathione, protein carbonyl content assays, and caspase-3 activity estimation. Moreover, the acute toxicity of ABFP was estimated in the zebrafish larval model. The results showed that ABFP exhibits little to no toxicity at lower concentrations in the acute toxicity test. ABFP-pretreated and scopolamine-exposed fish exhibited more exploratory behavior in the behavior assay than scopolamine-only induced groups. Additionally, the results of antioxidant enzyme assays revealed reduced oxidative stress and damage in ABFP-treated fish, while enzyme activity experiments carried out with brain homogenate from ABFP-treated fish showed decreased acetylcholinesterase enzyme activity. Overall, it can be concluded that ABFP has the potential to be a promising agent for the treatment of AD in the future.


Alzheimer Disease , Monocyclic Sesquiterpenes , Zebrafish , Animals , Zebrafish/metabolism , Scopolamine/adverse effects , Antioxidants/metabolism , Acetylcholinesterase/metabolism , Protein Carbonylation , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Oxidative Stress , Alzheimer Disease/chemically induced , Glutathione/metabolism
3.
Bioorg Med Chem ; 96: 117536, 2023 12 15.
Article En | MEDLINE | ID: mdl-38016411

In the present study, we evaluated the neuroprotective potential of Hesperidin Methyl Chalcone (HMC) against the neurotoxicity induced by Aß(25-35) peptide. HMC demonstrated higher free-radical scavenging activity than Hesperidin in initial cell-free studies. Investigations using the fluorescent dye thioflavin T with Aß(25-35) peptide showed that HMC has the ability to combat extracellular amyloid aggregation by possessing anti-aggregation property against oligomers and by disaggregating mature fibrils. Also, the results of the molecular simulation studies show that HMC ameliorated oligomer formation. Further, the anti-Alzheimer's property of HMC was investigated in in vitro cell conditions by pre-treating the neuro 2a (N2a) cells with HMC before inducing Aß(25-35) toxicity. The findings demonstrate that HMC increased cell viability, reduced oxidative stress, prevented macromolecular damage, allayed mitochondrial dysfunction, and exhibited anticholinesterase activity. HMC also reduced Aß induced neuronal cell death by modulating caspase-3 activity, Bax expression and Bcl2 overexpression, demonstrating that HMC pre-treatment reduced mitochondrial damage and intrinsic apoptosis induced by Aß(25-35).In silico evaluation against potential AD targets reveal that HMC could be a potent inhibitor of BACE-1, inhibiting the formation of toxic Aß peptides. Overall, the findings imply that the neuroprotective efficacy of HMC has high prospects for addressing a variety of pathogenic consequences caused by amyloid beta in AD situations and alleviating cognitive impairments.


Alzheimer Disease , Chalcones , Hesperidin , Neuroprotective Agents , Humans , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Chalcones/pharmacology , Hesperidin/pharmacology , Amyloid , Peptide Fragments/toxicity , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology
...